Preface

The Permian–Triassic transition in the eastern Paleo-Tethys and adjacent regions: Environmental and biotic changes in ocean and on land

1. Introduction

The 20-million-year interval from the late Middle Permian to early Middle Triassic (~260–240 Ma) was a critical period for the evolution of life on Earth. It witnessed two major biocrises: the first at the Guadalupian/Lopingian (Middle/Late Permian) boundary, and the second—the most severe and most protracted biocrise of the Phanerozoic—at the Permian/Triassic (P–Tr) boundary (Stanley and Yang, 1994; Yin et al., 2007). The P–Tr boundary (PTB) event was followed by multiple secondary episodes of faunal mortality and recovery during the ~5-Myr-long Early Triassic (Bottjer et al., 2008; Chen and Benton, 2012; Song et al., 2013) that were probably linked to episodic global environmental perturbations (Algeo et al., 2011; Retallack et al., 2011; Song et al., 2014). This extended P–Tr transition interval has attracted increasing attention from palentologists and geologists worldwide. The South China Craton preserves many nearly complete and little-altered Upper Permian to Middle Triassic successions representing a range of deep-marine, shallow-marine, and terrestrial facies, which have been intensively studied since the 1980s (Chen and Benton, 2012).

The pace of new findings related to the P–Tr transition coming from studies of South China successions continues to accelerate. Accordingly, we organized a special issue of Palaeogeography Palaeoclimatology Palaeoecology, in two volumes, focused on the Paleozoic–Mesozoic transition in South China. The first volume of the special issue (v. 486), which was published in 2017, consisted of 12 papers covering various aspects of the biostратigraphy, paleoecology, sedimentology, geochemistry, and paleoenvironment of the transition interval (Chen et al., 2017). The present (second) volume contains a further 18 papers covering the same general topics while advancing our knowledge of these fields with fresh studies from the past two years. The 18 studies of the present volume span the Upper Permian to Triassic of the eastern Paleo-Tethys region (mainly the South China Block) and adjacent areas (Fig. 1; below, blue text indicates studies in this volume). These contributions enhance our understanding of extreme events and organism-environment interactions during this critical period of Earth history.

2. The Permian–Triassic transition in eastern Paleo-Tethys and adjacent regions

2.1. Late Permian biota and environments

A 2nd-order mass extinction has been recognized near the Guadalupian/Lopingian boundary (GLB; =Middle/Late Permian boundary) in South China (Jin, 1993; Stanley and Yang, 1994; Bond et al., 2015), although the significance of this biocrise has been questioned owing to limited biotic and environmental turnover in most GLB sections (Chapman et al., 2009; Jost et al., 2014), and some studies have claimed that the event was mid-Capitanian in age (Wignall et al., 2009; Bond et al., 2010; Bond and Grasby, 2017).

Reef-community collapse followed by a nektonic extinction was recognized near the GLB in the Penglaitan section of the Laibin area, Guangxi, South China, and linked to contemporaneous oceanic anoxia and volcanism of the Emeishan large igneous province (Zhang et al., 2015; Huang et al., 2019a). It has been estimated that the GLB extinction coincided with a reduction in reef carbonate production of ~90% worldwide (Fügäl and Kiessling, 2002). The pattern of reef recovery following the Wuchiapingian collapse remains largely unknown. In this volume, Huang et al. (2019b) document biotic changes in a sponge-reef community of the upper Wuchiapingian Stage in the Tieqiao section, 30 km west of Penglaitan. The Tieqiao reef is the only metazoan buildup in the Wuchiapingian of South China (although metazoan reefs proliferated again during the Changhsingian), and its reemergence in the late Wuchiapingian was much delayed relative to the rebound of level-bottom benthos (i.e., brachiopods) in basal Wuchiapingian strata (Chen et al., 2005; Shen and Shi, 2009). Outside China, metazoan reefs are rare in the Wuchiapingian, and carbonate buildups are mainly bryozoan-microbe reefs (e.g., in the Germanic Basin; Peryt et al., 2016; Raczyński et al., 2017). This reflects a pattern of recovery also seen after other major extinction events (i.e., P–Tr extinction), in which microbial buildups proliferate in the absence of metazoan reefs.

Environmental perturbations prior to the main end-Permian crisis have been recognized only rarely, e.g., in the Canadian Arctic region (Algeo et al., 2012; Schoepfer et al., 2012) and South China (Y.A. Shen et al., 2011; Shen et al., 2012; Lei et al., 2017). In this volume, Tian et al. (2019) document environmental instability in the latest Permian as reflected in biotic and facies variations on some isolated carbonate platforms in the Nanpanjiang Basin. Biodiversity patterns and variations in skeletal composition in three uppermost Permian sections reveal: 1) a faunal shift from non-fusulinid-dominated to fusulinid-dominated communities in the <1-m interval below the P–Tr extinction horizon, and 2) a “foraminifer gap” coincident with increased influx of detrital siliciclastics prior to the P–Tr crisis. Additional studies are needed to investigate whether the environmental and biotic perturbations predating the main end-Permian crisis were regional or global phenomena.

Accompanying such environmental perturbations during the P–Tr transition may have been large changes in atmospheric pCO2 levels. Atmospheric CO2 changes have been estimated in several modeling
studies (Berner, 2002; Payne and Kump, 2007), but few proxy data are available to ground-truth these model estimates (e.g., Tabor et al., 2004). In this volume, Li et al. (2019) provide the most detailed analysis to date of paleo-atmospheric pCO2 changes at that time based on well-preserved cuticles from fossil conifers recovered from upper Changhsingian sections in South China. Two modeling approaches, the stomatal ratio method and the mechanistic model (Franks et al., 2014) were applied to generate pCO2 estimates. These methods yielded pCO2 estimates of ca. 300–510 ppm and ca. 360–520 ppm, respectively, which are lower than (but somewhat overlapping with) estimates based on coeval paleosols (Retallack, 2001). These paleo-atmospheric CO2 levels are more consistent with a cool climate rather than cold, glacial conditions during the late Changhsingian.

2.2. Uppermost Permian to Lower Triassic biochronostratigraphy

The standard conodont biostratigraphic framework for Upper Permian–Lower Triassic strata of South China has undergone major development over the past decade (e.g., Jiang et al., 2007, 2011; Shen and Mei, 2010; Zhao et al., 2007, 2013a; Z.Q. Chen et al., 2015). The study by Lyu et al. (2019) in this volume contributes to this development, establishing nine uppermost Permian to Lower Triassic conodont zones for the Ganxi and Jianshi areas of western Hubei Province. Although generally conforming to zonation schemes elsewhere in South China, this study recognizes the Clarkina planata Zone as a local ecoinzone reflecting deeper water biofacies during Hindeodus postparvus Zone time. It places the P–Tr and Induan–Olenekian (I–O) boundaries at the bases of the Hindeodus parvus Zone and Novispathodus waageni eowaaeni Subzone of the Nv. waageni Zone, respectively (cf. Zhao et al., 2007, 2013a; Lyu et al., 2018).

Studies of conodont biostratigraphy in the Panthalassic Ocean region have been severely limited in the past by a paucity of preserved Permian–Triassic strata. The Kamura section of Kyushu Island, Japan, is one of very few shallow-marine facies from the central part of this vast ocean. Previous study of its conodonts (Koike, 1996) and carbon-isotope stratigraphy (Horacek et al., 2009) has been done in a piece-meal fashion, and the conodont work is now outdated. In this volume, Zhang et al. (2019) undertake an integrated conodont and carbon-isotopic study of the Kamura section, recognizing 14 conodont zones from the upper Changhsingian to the upper Norian (Upper Triassic). This section consists of shallow-marine carbonates deposited in an atoll setting in the central Panthalassic Ocean, and gaps spanning the upper Lower Triassic Spathian stage and the upper Middle Triassic Ladinian stage are interpreted to represent eustatic falls and atoll exposure events. This study represents the most detailed biochronological and carbon-isotopic framework for the Triassic of the central Panthalassic region to date, including correlations with coeval biozones and carbon isotopic profiles of the Paleo-Tethys region.

2.3. Biotic variations during P–Tr transition in marine and terrestrial ecosystems

Changes in marine biotas during the end-Permian biocrisis and the prolonged ~5-Myr-long Early Triassic recovery interval have been intensely investigated for many years. Some studies have focused on general diversity patterns (Jin et al., 2000), whereas others have focused on specific biotic clades, e.g., bivalves (Posenato et al., 2005; McRoberts, 2010; Hautmann et al., 2011; Tu et al., 2016a), foraminifera (Song et al., 2013), ostracods (Crasquin-Soleau et al., 2007), or conodonts (Orchard, 2007), or specific ecosystem patterns, e.g., reduced tiering (Fraiser and Bottjer, 2005) and faunal miniaturization (the ‘Lilliput Effect’; Twitchett, 2007). Changes in microbial communities have also been documented, although most of this work is based on molecular fossils rather than body fossils (Xie et al., 2005, 2010; Cao...
et al., 2009). Major turnovers are also apparent in terrestrial ecosystems among vertebrates (Smith and Ward, 2001; Benton et al., 2004), land plants (Looy et al., 2001; Hochuli et al., 2010; Yu et al., 2015), and insects (Shcherbakov, 2008). However, changes in some fossil clades and communities with poor fossil records have not received much attention to date, e.g., marine phytoplankton and littoral-zone communities of marginal seas.

Phytoplankton, despite their importance as the base of the marine trophic web, are poorly known from P–Tr transition strata owing to preservational factors. The most commonly preserved types, known as acritarchs, have received some attention (Thomas et al., 2004; Lei et al., 2012; Shen et al., 2013). In this volume, Lei et al. (2019) assess secular changes in acritarch communities in uppermost Permian to Lower Triassic strata of eight South China sections. The recovered acritarchs belong to 25 species in 8 genera and include large-spherical, small-spherical, long-spined, and short-spined forms. Two sharp declines in abundance were identified in the latest Permian Clarkina meishanensis Zone and the earliest Triassic Isarcicella staeschei Zone, mirroring the two phases of mass extinction among marine invertebrates in South China (Song et al., 2013).

Terrestrial-marine transitional strata are widely present in southwestern South China (e.g., Peng et al., 2005; S.Z. Shen et al., 2011; Yu et al., 2015; Hong et al., 2018), but their faunal assemblages have received limited study to date (Chu et al., 2016). In this volume, Chu et al. (2019) undertake an integrative biostratigraphic study of multiple clades, i.e., conchostracans, plants, insects, and bivalves, with the goal of improving stratigraphic correlations between marine and continental P–Tr transitional beds across China. They show the utility of the Pteria-Towapteria-Eumorphotis bivalve assemblage, the P–Tr transitional beds across China. They show the utility of the latest Permian Clarkina meishanensis Zone and the earliest Triassic Isarcicella staeschei Zone, mirroring the two phases of mass extinction among marine invertebrates in South China (Song et al., 2013).

Trace fossils have been extensively investigated in P–Tr transition strata (Twichtew and Wignall, 1996; Pruss and Bottjer, 2004; Hofmann et al., 2011, 2015; Chen et al., 2012; Zhao et al., 2015; Feng et al., 2018). Earliest Triassic ichnospecies are exceptionally abundant and diverse in terrestrial-marine transitional settings. In this volume, Feng et al. (2019a) report on a diverse ichnoassemblage from marine inter-beds within basal Triassic terrestrial strata in the Houzhougongmiao section of Shaanxi Province, North China. The assemblage contains 17 ichnospecies in 16 ichnogenera and is dominated by epifaunal trace-makers such as shallow-tier ophiurid traces, scratch marks or trackways of arthropods, and fish swimming traces. This ichnoassemblage indicates that epifauna may have proliferated in marginal marine settings when other biota still suffered post-extinction environmental stresses.

2.4. P–Tr boundary volcanism and terrestrial weathering

K-bentonite beds are a prominent feature of PTB sections in South China, and they provide correlation horizons that are traceable through marine and terrestrial sections across the entire craton (Yang et al., 1991; Yin et al., 1992). These beds have been crucial in yielding zircons for U-Pb dating that have considerably refined the Late Permian–Early Triassic timescale (Bowring et al., 1998; Galfetti et al., 2007; S.Z. Shen et al., 2011; Burgess et al., 2014). Although the nature of these beds has been investigated in some marine sections (e.g., Gao et al., 2013; Deconinck et al., 2014), K-bentonites in terrestrial facies have received little attention. In this volume, Hong et al. (2019) investigate the clay mineralogy and geochemistry of ash beds in two terrestrial sections (Zhejue and Jiucachong) in eastern Yunnan Province, southwestern China. They infer variations in the intensity of local weathering and volcanic ash sources based on differences in ash-bed elemental and isotopic compositions. These P–Tr bentonites were likely sourced from a continental volcanic arc located on the paleo-southern margin of the South China block.

The felsic volcanic source of the P–Tr ash beds is reinforced by constraints from trace elements and Hf isotopes of zircon grains derived from 21 ash beds of three sections (Shangsi, Jianshi, and Meishan) in South China, as shown by X. Wang et al. (2019) in this volume. Volcanic ash compositions of dacite and rhyolite as well as low Nb/Hf and high Th/Nb ratios of magmatic zircons indicate derivation from silicic, subduction-related igneous activity with little or no basaltic input (cf. Gao et al., 2013). The P–Tr volcanism therefore likely occurred along the convergent southwestern margin of South China as a result of closure of the Paleo-Tethys Ocean. Ash beds near the P–Tr extinction horizon contain zircons with pronounced positive εHf(t) values indicating input of juvenile mantle with limited interaction between magma and crust, implying rapid transit through the crust (cf. Gao et al., 2013).

Mercury (Hg) enrichments have been developed in recent years as a proxy for volcanic inputs to sedimentary successions (Sané et al., 2012; Sial et al., 2013). Hg anomalies have been reported from many PTB sections globally, implying a source in the Siberian Traps Large Igneous Province (STLIP) (Grasby et al., 2013, 2017; Wang et al., 2018; Shen et al., 2019a). However, Wang et al. (2018) showed that pronounced positive Hg/TOC excursions coincided with ash beds near the PTB in South China that cannot exclude a regional origin, although the same positive excursion does not occur in the ash beds below and above the PTB, suggesting that Hg anomalies may have a both a regional and a global component. Moreover, the overlap in time of the felsic volcanism, which was associated with subduction zone magmatism of the Paleo-Tethys, with the STLIP, and the peak in felsic activity at this time likely enhanced the global environmental burden that may have resulted in the P–Tr mass extinction (Chen et al., 2018). Work in progress demonstrates high Hg anomalies in Lower Triassic sections globally from the Griesbachian through the Smithian, suggesting that at least moderate STLIP activity continued until around the Smithian-Spathian boundary, i.e., throughout the first ~1.5 Myr of the Early Triassic (Shen et al., 2019b).

An important consequence of STLIP activity during the Early Triassic and attendant hyperwarming (Sun et al., 2012) was enhanced chemical weathering on land (Retallack, 2005; Sheldon, 2006; Algeo et al., 2011). Recently, new proxies have been used to test changes in weathering fluxes in marine sections, including rare earth elements in conodonts (Zha et al., 2013b; Li et al., 2017) and lithium (Li) isotopes of the whole-rock samples (Sun et al., 2018). In this volume, Cao et al. (2019) show a major increase in chemical weathering intensity during the P–Tr transition based on chemical index of alteration (CIA) profiles and other weathering indices from two terrestrial sections in North China (Shichuanhe and Yima). All weathering proxies show a positive shift close to the P–Tr extinction horizon, indicating a close relationship between the mass extinction and changes in weathering intensity.

2.5. Marine environmental stresses and microbial proliferation in aftermath of end-Permian mass extinction

Following the end-Permian mass extinction, Early Triassic oceans experienced recurrent episodes of deleterious conditions, marked by high temperatures, anoxia, seawater acidification (Grice et al., 2005; Sun et al., 2012; Clarkson et al., 2015; J. Chen et al., 2015; Huang et al.,
Microbialites are widespread in Lower Triassic successions of South China as a result of prolific microbial growth in the disturbed marine environmental conditions following the end-Permian mass extinction (Schubert and Botjter, 1995; Lehmanna, 1999; Kershaw et al., 2007, 2012; Lehmanna et al., 2015; Fang et al., 2017; Wu et al., 2017). In particular, the P–Tr boundary microbialite (PTBM) has been documented from at least 30 sections in South China (Wu et al., 2017). In this volume, Pei et al. (2019) describe a new PTBM from the Xiajiaoac section of western Hubei Province, that is characterized by both “cabbage-like” stromatolites and cm-scale clotted thrombolites. As in other PTBMs (Fang et al., 2017; Wu et al., 2017), Gokhumella columns, coccolid- and bacterial clump-like spheroids are abundant at Xiajiaocao and thought to have played an important role in microbialite formation. Based on pyrite framoid analysis, these microbial communities are inferred to have thrived under dysoxic conditions. In addition, the microbialite contains few volcanogenic grains (e.g., β-quartz or microcrerules), implying that microbial blooms were largely unaffected by contemporaneous volcanism. Also in this volume, T. Wang et al. (2019) present new observations on the PTBM in the Chongyang section of southeastern Hubei Province, documenting an evolution from stratiform stromatolites to tabular thrombolites and then domical thrombolites. Eustatic sea-level changes are inferred to have been the main controlling factor on their growth.

An unusual occurrence of in-situ stromatolitic textures form carbonate nodules within calcareous mudstones of the Tieshikou Formation, just above the PTB in the Tieshikou section, Jiangxi Province, as described by Yang et al. (2019) in this volume. These microbialites are composed of columnar forms and fan-shaped structures. The columnar structures resemble mini-stromatolites in profile, while most branches are patchy or stripe-shaped, with clotted structures in plan view, resembling those of a thrombolite. Fan-shaped cement precipitates consist of multiple crystal fans that have a radiating pattern with preferred alignment parallel to bedding under SEM imaging, suggesting binding and trapping effects by a microbial matground. Moreover, close association of both trace and body fossils with the wrinkle structures in the Perh Basin (Chen et al., 2012) is interpreted to indicate that shelly fauna and trace-making animals may have occupied the matground habitat as a refuge to survive the generally harsh oceanic environmental conditions of the Early Triassic.

2.6. Exceptionally preserved faunas of early Middle Triassic age

Fossil lagerstätten provide key insights into soft-bodied faunas and nearly intact paleo-communities that cannot be gleaned from typical fossil assemblages (Bottjer et al., 2002). The Anisan Luoping Lagerstätte from Luoping County, eastern Yunnan Province, southwestern China, has yielded rich finds of early Middle Triassic marine life, including exceptionally preserved reptiles, fishes, decapods, and arthropods, and abundant ichnofaunas (Luo et al., 2019b), marking the full recovery of marine ecosystems from the P–Tr mass extinction (Chen and Benton, 2012). In this volume, J. Huang et al. (2019) examine conodont assemblages in the Luoping Lagerstätte, reporting on 41 fused conodont clusters (Nicorarella) that provide otherwise unobtainable information for reconstruction of the positions of elements in the conodont apparatus. These data provide key insights regarding homologies, evolutionary relationships, function, and feeding patterns among conodont taxa.

3. Concluding remarks

The new findings in this volume, together with those assembled in the first volume of this special issue, represent significant advances on our understanding of biotic-environmental interactions during the Late Permian to Middle Triassic in the eastern Paleo-Tethys and adjacent regions. We are grateful to all contributors, reviewers, and Palaeo-3 co-editor-in-chief Isabel Montañez for their efforts in completing this thematic special issue.

Editorial work by ZQC is partly supported by four National Natural Science Foundation of China grants (41821001, 41572091, 41772007, 41661340447), and a Hubei Provincial Natural Science Foundation grant (2017CFA019). This is a contribution to IGCP Project 630 “Permian–Triassic climatic and environmental extremes and biotic response”.

References


Zhong-Qiang Chen⁎, Thomas J. Algeo⁎⁎, Shane D. Schoepfer‡

⁎ State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China

⁎⁎ Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA

‡ State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan), Wuhan 430074, China

E-mail addresses: zhong.qiang.chen@cug.edu.cn (Z.-Q. Chen), Thomas.Algeo@uc.edu (T.J. Algeo), shane.schoepfer@ucalgary.ca (S.D. Schoepfer).