1. Introduction

The Triassic was a critical period for the evolution of life on Earth. It witnessed the greatest biocrisis of the Phanerozoic (the Permian-Triassic (P-Tr) mass extinction) at its beginning, a limited and fitful recovery from this biocrisis during the Early Triassic, and a more sustained recovery and re-radiation of life during the Middle Triassic. The Middle Triassic recovery featured not only a biotic radiation but also significantly altered ecosystem structures, facilitating the emergence of calcareous nanofossils in the ocean and early dinosaurs on land. During the early Late Triassic, a long-lasting climate extreme (the mid-Carnian Pluvial Event, or CPE) had global effects. South China harbors some of the most accessible and continuous Triassic marine successions in the world, providing opportunities for geologists to probe these biotic and environmental events and their possible causes. The theme of this special issue of *Palaeogeography, Palaeoclimatology, Palaeoecology* is the transition from Paleozoic to Mesozoic systems as recorded in latest Permian and Triassic strata of South China. This issue includes biostatigraphic, paleoecologic, sedimentologic, and geochemical studies focused on marine environmental and climatic variation and the biotic and biosedimentary responses to it during the latest Permian and P-Tr transition (4 papers), the Early Triassic (6 papers), and the Late Triassic (2 papers). These contributions advance our understanding of Triassic global events, with a special emphasis on organism-environment interactions during this critical period of Earth history.

2. The Paleozoic-Mesozoic transition in South China

2.1. Latest Permian and Permian-Triassic boundary

Oceanic redox changes, specifically a major expansion of anoxic regions, are thought to have played an important role in the latest Permian mass extinction (LPME) (Wignall and Twitchett, 1996; Meyer et al., 2008). Recent studies have provided evidence that sustained anoxia developed in oxygen minimum zones (OMZs) of the oceanic thermocline (~200-1000 m water depth) during the latest Permian (Algeo et al., 2011a; Winguth and Winguth, 2012; Feng and Algeo, 2014), probably by ~50-100 kyr prior to the LPME (Algeo et al., 2012; Huang et al., 2017). Oceanic OMZs represented long-term reservoirs of euxinic waters that set the stage for episodic, brief incursions of H₂S into the ocean-surface layer (Kump et al., 2005; Algeo et al., 2007, 2008) that may have had a decimating effect on shallow-marine biotas (Bottjer et al., 2008; Chen and Benton, 2012), except in areas protected from such incursions (e.g., Beatty et al., 2008).

Two studies in this volume provide new evidence that euxinic watermasses developed during the Late Permian prior to the LPME. Lei et al. (2017) generate a high-resolution redox history from the latest Wuchiapiangian (early Late Permian) through the earliest Induan based on Fe-S-C-Mo geochemical study of a carbonate-ramp section at Ganxi, western Hubei Province. They demonstrate the development of intensely anoxic conditions during three intervals: (1) in the latest Wuchiapiangian, (2) in the early to mid-Changhsingian, and (3) during the latest Changhsingian (following the LPME). Whereas the end-Permian euxinic episode is well-established, the earlier episodes do not appear to have global significance (cf. Elrick et al., 2017), and their underlying causes remain unknown. The latest Wuchiapiangian and latest Changhsingian episodes are characterized by ferruginous conditions (versus euxinic for the early to mid-Changhsingian episode), suggesting that seawater sulfate was intermittently drawn down to low concentrations during the Late Permian.

The study of Li Y. et al. (2017b) in this volume examines the rare earth element (REE) and trace-element content of conodont apatite from a shallow carbonate platform at Yangou in Jiangxi Province. Because the geochemical composition of conodonts can be easily altered by diagenetic uptake of REEs and trace elements released to sediment porewaters from clay minerals (Chen et al., 2015; Zhang et al., 2016), use of conodonts for analysis of paleo-seawater chemistry requires that the host sediments be nearly clay-free. Pre-LPME Upper Permian strata at Yangou meet this condition, and their Ce/Ce* ratios and U concentrations document mostly oxic conditions on the shallow Yangou carbonate platform punctuated by episodes of suboxic to anoxic conditions possibly produced through shoaling of the oceanic chemocline. Conodonts in post-LPME uppermost Permian and lowermost Triassic strata at Yangou contain substantial amounts of clay-derived REEs that overprinted any original hydrogenous signal, reflecting a general increase in the siliciclastic content of marine sediments following the LPME as a result of intensified pedogenic clay-mineral production (cf. Algeo and Twitchett, 2010; Algeo et al., 2011b).

Another form of environmental stress during the P-Tr transition in the South China region was frequent volcanic ash fall events. Some P-Tr
boundary sections contain dozens of K-bentonites (altered ash layers; e.g., Shen et al., 2012), some of which may be traceable for > 1000 km across the South China Craton (Yang et al., 1991). These eruptive events were responsible, at least in part, for the P-Tr biocrisis in the South China region (Gao et al., 2013). In this volume, Hong et al. (2017) examine the composition, alteration history, and potential sources of these volcanic ashes based on the clay mineralogy, elemental chemistry, and Sr and Nd isotopic compositions of the Pengda and Ximin sections in Guizhou Province, representing shallow-marine and deep-marine settings, respectively. The deep-water section (Ximin) exhibits notably higher 87Sr/86Sr ratios and higher K2O content, which is attributed to more intense chemical weathering and greater incorporation of K− into clay minerals at low porewater pH during early diagenesis. These differences are consonant with generally lower pH in deep-water sections due to sinking and decay of organic carbon via the biological pump, although the intensity of these processes may have increased during the P-Tr transition (cf. Song et al., 2013).

In response to environmental stresses, some marine invertebrates reduced their body sizes during the P-Tr transition, a pattern known as the ‘Lilliput Effect’ (Twitchett, 2007; Song et al., 2011). However, controls on body size are complex, as shown by the study of He et al. (2017) in this volume. They investigated influences on the sizes of two chonetid brachiopod species in South China during the Changhsingian, demonstrating a strong correlation with water depth, which correlates with a number of direct controls such as nutrient availability, redox conditions, habitat temperature, and substrate type. With respect to Late Permian chonetid brachiopods, food restriction, low-oxygen conditions, and high bottom water temperatures are inferred to have been important factors limiting body size. These findings may provide insights into the nature of the environmental stresses that triggered the Lilliput Effect among many marine invertebrates during the P-Tr transition.

2.2. Early Triassic

Early Triassic oceans were characterized by volatile conditions, as reflected in large δ13Ccarb excursions (to > 10‰; Payne et al., 2004; Tong et al., 2007; Korte and Kozur, 2010), large but fluctuating vertical δ13C gradients of dissolved inorganic carbon (DIC) (Meyer et al., 2011; Song et al., 2013), and large sulfur cycle perturbations (Song et al., 2014). The significance of all of these perturbations remains under debate. The large fluctuations in δ34SCAS may have been driven by volcanic/volcanogenic inputs of 13C-depleted carbon (Payne and Kump, 2007), by fluctuations in marine productivity and organic carbon burial (Schoepfer et al., 2012, 2013; Song et al., 2014), or a combination of processes (Algeo et al., 2011b). Increases in vertical δ13C gradients of DIC may have been driven by marine productivity increases (Meyer et al., 2011) or intensified water-column stratification (Song et al., 2013). Evidence from the marine sulfur cycle may be important in constraining viable options in that strong coupling of δ34SCAS and δ34SCS during the Early Triassic requires a mechanism consonant with co burial of reduced carbon and sulfur (Song et al., 2014).

In this volume, Schobben et al. (2017) investigated marine sulfur cycling during the P-Tr transition (late Changhsingian to mid-Griesbachian) at Balvany, Hungary and Kuh-e-Ali Bashi and Zal, Iran based on paired sulfur isotopic analyses of chromium-reducible sulfur (CRS) and carbonate-associated sulfate (CAS). They document nearly invariant Δ34SCAS-CRS values of 15–16‰ at all three sections, indicating low but relatively uniform latest Permian to Early Triassic seawater sulfate concentrations of 1.7 ± 1.1 mM (calculated based on the MSR-trend method of Algeo et al., 2015; cf. < 4 mM estimate of Luo et al., 2010). A secular trend toward heavier δ34SCAS and δ34SCS during the earliest Triassic may have been due to more rapid overturn of the marine sulfate cycle and a concurrent change in terrestrial sulfur sources, possibly related to inputs of 5S-enriched sulfur from Cambrian evaporite deposits mobilized by Siberian Traps magmatism. The high turnover rate of marine sulfate may have left the ocean system vulnerable to development of widespread euxinic conditions during the Early Triassic.

Although there has been considerable debate about the extent and intensity of oceanic anoxia following the LPME, recent studies making use of the carbonate U-isotope global-ocean redox proxy have demonstrated substantial anoxia during the Early Triassic (Brennecka et al., 2011; Lau et al., 2016; Elrick et al., 2017). However, studies making use of local redox proxies have shown that oceanic redox changes were spatially and temporally complex (e.g., Bond and Wignall, 2010). In this volume, Liao et al. (2017) examine pyrite framboisite size distributions at Dajiang, Guizhou Province, demonstrating a decrease in size in conjunction with the LPME. They note that the Dajiang section, which was located on the Panthalassic (paleo-eastern) margin of South China, exhibits smaller pyrite frambooids as well as a more extreme negative δ13C shift at the LPME than sections from the craton’s Paleo-Tethyan (paleo-western) margin. On the basis of this spatial variation, they infer that upwelling of reducing deep-ocean waters was relatively more intense on the Palanthalassic margin of the South China Craton (cf. Algeo et al., 2007, 2008).

One consequence of the stressed environments and decimated marine ecosystems that followed the LPME was the widespread development of ‘anachronistic’ biosediodynamic facies that more closely resembled those of the pre-metazoan Precambrian than the Phanerozoic (Baud et al., 2007; Kershaw et al., 2009; Woods, 2014). These facies include microbialites, oncoids, giant ooids, and vermicular limestones and are found in carbonate platforms during the Early Triassic (Lehrmann et al., 2012; Li et al., 2013; Tian et al., 2015). In this volume, Fang et al. (2017) report the discovery of a 16-m-thick stromatolite that exhibits domal, stratified columnar, wavy laminated, cabbage-shaped, roll-up, and conical structures. Some interior layers within the ooids exhibit intense fluorescence, indicative of microbial organomineralization. Moreover, abundant nanometer-scale textures and particles in both stromatolites and ooids are attributed to abundant organic matter in seawater, resulting from microbial proliferation. This stromatolite-ooid complex represents the largest structure of this type reported globally from the Lower Triassic to date.

The role of microbial agents in the precipitation of coated carbonate grains has long been debated (Davies et al., 1978; Folk and Lynch, 2001; Duguid et al., 2010). In this volume, Li Y. et al. (2017a) investigate the genesis of Lower Triassic giant ooids from the Haicheng and Moyang sections,
which were located respectively on the Pingguo Platform and Great Bank of Guizhou in the Nanpanjiang Basin. The REE + Y distributions of these ooids show a hydrogenic (seawater-derived) pattern, and their Y/Ho ratios (53 ± 12) are close to modern seawater values, indicating that the ooids preserve a primary marine signature. Using in situ laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) combined with petrographic and isotope data, the authors identify evidence of microbial activity within the ooids. Specifically, the dark-colored laminae contain structures resembling microbial filaments, display intense florescence revealing the presence of extracellular polymeric substances, and yield higher concentrations of nutrient-related trace elements (e.g., Zn and Ba) than the adjacent light-colored laminae, suggesting that dark-lamina precipitation, at a minimum, was influenced by microbially generated chemically microenvironments.

The first one-and-a-half to two million years of the Early Triassic (Griesbachian to Smithian stages) was an interval of harsh environmental conditions, with some amelioration occurring around the Smithian-Spathian boundary (Galfetti et al., 2007; Zhang et al., 2015) in concert with a partial recovery of marine invertebrate faunas (Brayard et al., 2006, 2009). Prior to this event, environmental conditions reached an extreme during the late Smithian Thermal Maximum (STM), when upper sea-surface temperatures may have exceeded 40 °C (Sun et al., 2012; Romano et al., 2013). Despite these extreme conditions, some components of marine faunas seem not to have been adversely affected. For example, during the late Smithian, primitive metazoaan reefs thrived (Brayard et al., 2011) and trace fossils diversified (Chen et al., 2012). In this volume, Feng et al. (2017) report on a diverse ichnoassemblage from the upper Smithian of the Lichuan area, western Hubei Province. This assemblage comprises 13 ichno-forms, including simple horizontal traces, vertical traces, oblique- or horizontally branching traces, and complex burrow networks, representing several ethological types, including fodinichnia, domicichnia, pascichnia, and repichnia. The diversity of the Lichuan ichnoassemblage, as well as increases in ichnofabric index (to ii 4–5) and various ichno-ecologic measures (e.g., burrow size, tiering level), documents an abrupt increase in marine invertebrate activity during the late Smithian.

3. Late Triassic

The Late Triassic, once regarded as a long interval of time marked by few events of global importance, has seen renewed research interest in recent years. One event of importance is the ~231-Ma mid-Carnian Pluvial Event (CPE), which is characterized by extreme humidity on land, a rise of the calcite compensation depth (CCD) in the oceans, and a 2nd-order extinction among carbonate-secreting marine invertebrates (Preto et al., 2010; Ogg, 2015; Sun et al., 2016). This event remains poorly documented in China, although recent studies have linked it to the demise of massive carbonate platforms and the onset of shale deposition in the upper Ma`antang and Wayao Formations (Shi et al., 2017). However, the timing and extent of the CPE in South China and its global correlations remain uncertain.

Guizhou Province in South China represents an important area for research on Middle and Upper Triassic marine units, but the stratigraphic position of the ~257-Ma Ladinian/Carnian (or Middle/Upper Triassic) boundary has not been precisely located to date. In this volume, Zhang et al. (2017) report a detailed conodont zonation from the upper Ladinian and Carnian Yanglijiuang, Zhuganpo, and Wayao Formations. Four conodont zones, in the ascending order, the Paragondolella foliata, Quadralella polygnathiformis, Q. tadpole, and Q. aff. praellindae zones, are established. The Zhuganpo Formation is constrained as early Carnian (Julian 1) in age, and the Wayao Formation probably extends from Julian 2 into the late Carnian (Tuvalian substage). Although the Ladinian–Carnian boundary cannot be precisely defined due to the absence of the ammonoid Duxatina canadensis and the paucity of conodonts, it is unlikely to be lower than the Yanglijiuang–Zhuganpo formation contact. The occurrence of the basal Julian 2 ammonoid Austrotrachyceras ex gr. A. austricum constrains the Julian 1–Julian 2 (early Carnian) substage boundary to the uppermost Zhuganpo Formation, which is supported by the disappearance of most short-ranging Julian 1 conodonts in the overlying Wayao Formation.

Finally, this volume contains a study addressing the redox conditions under which widely distributed Late Triassic organic-rich shales in North China accumulated (Yuan et al., 2017). The study units are black shales of the Yanchang Formation that are Carnian to Norian (Late Triassic) in age and, although not precisely dated, span the interval of the CPE. These units are important source rocks for oil and gas deposits found in North Chinese basins (e.g., Ordos Basin). The 7th member of the Yanchang Formation (Ch7) contains high organic carbon concentrations and abundant phosphate nodules and large pyrite framboids (10-18 μm in average diameter), which are consistent with deposition of this organic-rich shale under oxic to suboxic (and rarely anoxic) bottom-water conditions. Thus, redox conditions alone are insufficient to account for the strong organic enrichment of these units, and other factors (e.g., high sedimentation rates, and possibly salinity-controlled watermass stratification) must be invoked.

3. Concluding remarks

The new findings assembled here provide important materials for evaluating the interactions between organisms and stressed environments during the latest Permian and Triassic, which saw the greatest biocrisis and most protracted biotic recovery of the Phanerozoic. The current special issue is partly supported by 111 Program of China (B08030) and NSFC grants (41570291). It is a contribution to IGCP 630 "Permian-Triassic climatic and environmental extremes and biotic response".

Acknowledgments

We are grateful to all contributors, reviewers, and Palaeo-3 co-editor-in-chief Isabel Montañez for their efforts in completing this thematic issue. This special issue is partly supported by 111 Program of China (B08030) and NSFC grants (41570291). It is a contribution to IGCP 630 “Permian-Triassic climatic and environmental extremes and biotic response”.

References


Zhong-Qiang Chen①
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China
Geosciences & Natural Resources Department, Western Carolina University, Cullowhee, NC 28723, USA
E-mail address: zhong.qiang.chen@cug.edu.cn

Thomas J. Algeo
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China
Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan), Wuhan 430074, China
E-mail address: Thomas.Algeo@uc.edu

Yadong Sun
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China
Geozentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
E-mail address: yadong.sun@cug.edu.cn

Shane D. Schoepfer
Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 Canada
Geosciences & Natural Resources Department, Western Carolina University, Cullowhee, NC 28723, USA
E-mail address: schoepfer@email.wcu.edu

① Corresponding author.